Optimal quantization for uniform distributions on Cantor-like sets

نویسنده

  • Wolfgang Kreitmeier
چکیده

In this paper, the problem of optimal quantization is solved for uniform distributions on some higher dimensional, not necessarily self-similar N−adic Cantor-like sets. The optimal codebooks are determined and the optimal quantization error is calculated. The existence of the quantization dimension is characterized and it is shown that the quantization coefficient does not exist. The special case of self-similarity is also discussed. The conditions imposed are a separation property of the distribution and strict monotonicity of the first N quantization error differences. Criteria for these conditions are proved and as special examples modified versions of classical fractal distributions are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Quantization for Dyadic Homogeneous Cantor Distributions

For a large class of dyadic homogeneous Cantor distributions in R, which are not necessarily self-similar, we determine the optimal quantizers, give a characterization for the existence of the quantization dimension, and show the non-existence of the quantization coefficient. The class contains all self-similar dyadic Cantor distributions, with contraction factor less than or equal to 1 3 . For...

متن کامل

Quantization for uniform distributions on equilateral triangles

We approximate the uniform measure on an equilateral triangle by a measure supported on n points. We find the optimal sets of points (n-means) and corresponding approximation (quantization) error for n ≤ 4, give numerical optimization results for n ≤ 21, and a bound on the quantization error for n → ∞. The equilateral triangle has particularly efficient quantizations due to its connection with ...

متن کامل

Optimal quantization for the one-dimensional uniform distribution with Rényi-α-entropy constraints

We establish the optimal quantization problem for probabilities under constrained Rényi-α-entropy of the quantizers. We determine the optimal quantizers and the optimal quan-tization error of one-dimensional uniform distributions including the known special cases α = 0 (restricted codebook size) and α = 1 (restricted Shannon entropy).

متن کامل

The approximate solutions of Fredholm integral equations on Cantor sets within local fractional operators

In this paper, we apply the local fractional Adomian decomposition and variational iteration methods to obtain the analytic approximate solutions of Fredholm integral equations of the second kind within local fractional derivative operators. The iteration procedure is based on local fractional derivative. The obtained results reveal that the proposed methods are very efficient and simple tools ...

متن کامل

Lipschitz Equivalence of Cantor Sets and Algebraic Properties of Contraction Ratios

In this paper we investigate the Lipschitz equivalence of dust-like self-similar sets in Rd. One of the fundamental results by Falconer and Marsh [On the Lipschitz equivalence of Cantor sets, Mathematika, 39 (1992), 223– 233] establishes conditions for Lipschitz equivalence based on the algebraic properties of the contraction ratios of the self-similar sets. In this paper we extend the study by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008